
Journal o f  Statistical Physics, Vol. 23, No. 1, 1980 

Microscopic Modes in a Fermi Superfluid. 
II. Dispersion Relations 
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This is the second of two papers in which microscopic expressions for the 
amplitudes and dispersion relations for hydrodynamic modes in an isotropic Fermi 
superfluid are derived. In this paper we obtain approximate solutions to the 
linearized kinetic equations for the bogolon spin density and total density for the 
case of long-wavelength disturbances after long times when a fluctuating superfluid 
velocity is present. In so doing, we obtain microscopic expressions for the 
amplitude and dispersion relations for the spin diffusion mode, the two shear 
modes, and the four longitudinal modes (two first-sound modes and two second- 
sound modes). 

KEY WORDS: Fermi superfluids; transport theory; hydrodynamic modes; 
microscopic mode theory; broken symmetry; Wigner functions. 

1. I N T R O D U C T I O N  

In a previous paper,  which we shall call I, we derived decoupled linearized 
kinetic equat ions for the bogolon  spin density and total bogolon density in an 
inhomogeneous  Fermi superfluid with a fluctuating superfluid velocity. In this 
paper, we shall obtain approximate  solutions to the linearized kinetic 
equat ions for the case o f  long-wavelength inhomogeneit ies and long times. 
That  is, we shall obtain microscopic expressions for the amplitudes and 
dispersion relations o f  the spin diffusion mode,  the two shear modes, and the 
four longitudinal modes (two first-sound modes and two second-sound 
modes). 

We begin in Section 2 with the equat ions for the bogolon spin density 
and, using per turbat ion techniques, we derive microscopic expressions for the 
ampli tude and dispersion relations for the spin diffusion mode. At the same 
time, we obtain a microscopic expression for the coefficient o f  spin diffusion in 
terms of  a bogolon  velocity autocorrela t ion function. 
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In Section 3 we begin with the more difficult problem of obtaining the 
modes for quantities which depend on the total bogolon density. The shear 
modes are relatively simple to obtain because the kinetic equation for that case 
can be written in the form of a linear eigenvalue equation. In Section 3 we 
obtain microscopic expressions for the shear mode amplitudes and dispersion 
relations, and we obtain an expression for the coefficient of shear viscosity in 
terms of a bogolon momentum current autocorrelation function. 

In I we were able to close the kinetic equations by requiring that the total 
particle density obey a continuity equation. This is the usual assumption in the 
hydrodynamic theory for isotropic superfluids. We found, however, that this 
method of closure introduced an imaginary term into the expression for the 
chemical potential. In Section 4 we discuss the effect of this term on the 
longitudinal modes. 

For the case of the longitudinal modes, the kinetic equation is no longer 
linear in the frequency and wave vector of the inhomogeneities, and therefore 
it does not take the form of a linear eigenvalue equation. However, we can still 
use perturbation techniques to find approximate solutions to the longitudinal 
kinetic equation. As we shall see, it is precisely this nonlinear character which 
enables us to obtain microscopic expressions for the four longitudinal 
hydrodynamic modes. In Section 5 we obtain microscopic expressions for the 
longitudinal mode amplitudes and dispersion relations, and we obtain 
microscopic expressions for the various sound velocities introduced in I. 
Finally, in Section 6 we make some concluding remarks. 

2. SPIN D IFFUSION 

The linearized kinetic equation for the bogolon spin density can be 
written in the form 

.~m(k,q, t)  hk,q ~-u (1-Gk)m(k,q , t )=- i I~- ) (1- - (~k)m(k ,q , t )  (2.1) 
l ~ t  m Ek 0 

where the integral operator (~k is defined by 

9 V af~ m(k', q, t) (2.2) Gkrn(k, q, t) --= ~ z.. o 
k' OEk' 

and the collision operator/~k -) is defined by 

[~-)= ~ \~duo) (2.3) 

( ) The collision operator Ck- was defined in Eq. (I.4.29). In order to simplify our 
notation, it is convenient to introduce the following scalar product: 

1 1 2 ~/~o_ *(k)~(k) (2.4) 
<Olq~> -- N O V k (~Ek 0 
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where N O is the normalization constant 

Ofk~ (2.5) N~ = 1 ~  c3EkO 

We now expand the spin density in terms of eigenvectors Iq~,(k, q)) of the 
operator I~-)(q)(1 - ~=), where 

~-)(q) = i ~  - )  + q u  s (2.6) 

and u s is the z component of bogolon velocity 

us = ( h k z / m ) ~ k / E k  ~ (2.7) 

(q is directed along the z axis). That is, we write 

m(k, q, t) = ~ IW.(q, k))  e-i~ (2.8) 
n=O 

and the kinetic equation takes the form 

~o, ftF,(k, q)) = ~-)(q)(1 - (~k)lW.(k, q)) (2.9) 

We have now reduced the linearized kinetic equation for the bogolon spin 
density to a linear eigenvalue equation. 

We are interested in finding an expansion in powers of q of those 
frequencies that correspond to the hydrodynamic modes in the system. We 
remember that the hydrodynamic modes are those modes whose frequencies 
go to zero when q ---, 0. Let us first introduce a new vector [z,(k, q)), defined by 

I z , (k ,  q )>  = (1 - (~k) l tF, (k ,  q ) )  (2 .10)  

and write Eq. (2.9) in the form 

~o,(1 - Gk)- llz,(k, q)) = ( i i~  -~ + qUz) lZ , (k ,  q)) (2.11) 

We now expand both co, and Iz,(k, q)) in powers of q. Thus, 

~ ,  = co~, ~ + qo~, 1) + q2o~,2) + ..- (2.12) 

and 

rz,(k, q)) = IZ~,~ + qlz~l)(k)) + qZFz~,2)(k)) + "" (2.13) 

We can systematically solve Eq. (2.11) for various terms in Eqs. (2.12) and 
(2.13). 

In Eq. (I.4.31) we found that there is one hydrodynamic eigenfunction of 
~k -). We shall denote it IZ~ ~ and define it by 

Ig~ ~ = 1 (2.14) 
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so it is normalized to one with respect to the scalar product  in Eq. (2.4). The 
eigenfunction ]Z(~ ~ has the proper ty  that  

I(k ->l'(~ = 0 (2.15) I/~1 / 

Fur thermore ,  since ~k-) is self-adjoint, the left eigenvector ()~~ I is equal to the 
right eigenvector 1)(1~ If we retain terms in Eq. (2.11) (for n = 1) to zeroth 
order  in q and multiply by (Z]~ we find 

o)(1 ~ = 0 (2.16) 

If  we retain terms to first order  in q, we find that  

(Di 1) = < X i ~  1 - -  G k ) -  1IX(0)) = 0 (2.17) 

because of  angle integrations in the matr ix element <Z~~176 
Fur thermore ,  the first-order correction Iz]l)(k)) can be written 

]Zil)(k)) = - ( i ~ k  ->) luzlz]~ (2.18) 

If we retain terms to second order  in g, we obtain 

o f  > = - ((Z(t~ - dk)-tlx(l~176 )) (2.19) 

It is simple to show that  

(z(~~ - Gk)- ~lZ(1 ~ = (1 - gN~ -1 (2.20) 

where N o is defined in Eq. (2.5). Thus the hydrodynamic  eigenvalue coa, to 
second order  in q, can be written 

co 1 = --q2(1 -- gN~ - lib/z) (2.21) 

If  we compare  Eq. (2.20) with Eq. (I.6.6) for  the macroscopic dispersion 
relation of  the diffusion mode,  we obtain the following expression for the 
coefficient o f  spin diffusion D: 

D = - (1 - gN~ -))-  l luz) (2.22) 

Thus, the spin diffusion coefficient is given by a bogolon velocity autocor-  
relation function, as we expect. 

3. S H E A R  M O D E S  

We now come to the more  complicated problem of  finding the 
frequencies of  hydrodynamic  modes that  depend on the total bogolon density. 
In Eq. (I.4.22), we have written the kinetic equat ion for the total bogoton 
density h(k, q, t). As for the case of  the spin mode,  we can expand h(k, q, t) as 
follows: 

oc 
h(k, q, t) = ~ ]W,(k, q ) )e  -~~ (3.1) 

n = l  
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The equation for IqJ.(k, q)> takes the form 

~o.IW.(k, q)> - qu:[1 + Jk(co.)]lW.(k, q)> 

= ff~+)[1 + Jk((Dn)]l~IJn(k , q)> (3.2) 

where the collision operator [~+) is defined in terms of the collision operator 
d~k +) [cf. Eq. (I.4.28)3, 

1 ( ~j~o ~-10(k+ ) (3.3) 
11+~ = ~ \Oek ~ 

and the integral operator Jk(co.) is defined by 

a~(co.)r~'.(k, q)> 

- q h q~lk~>-[ l+F(T)]  ~ F ( T ) + R ( T ) ~  
On mOgn Ek / J I -  

x - - ( k z  " i | ~ - / -  [l + F(T)] ,q',(k', q)> 
3 m ( \ z ~ , /  

x ii~k +~ $.(k', q) 

+ 

+ 

The functions 

where 

E~fO~ff[1-~ - F(T)3- l<E~kkO' ' ~.(k', q)> 
~k \gAo / A o  , q)> 

z(T), F(T), and R(T) are defined as follows: 
1 ~ 

; ~ ( T ) = i - g v ~ \ E o / /  2~6kotanh 2 

9 ~  A(~6ko)e & tanh flEk~ 
F(T) = - ~  e k 2 

R(T) = - V  ~k ~?Ek ~ 2m 

(3.4) 

(3.5) 

(3.6) 

[1 + F(T)] (3.7) 

fk ~ = [exp(+flEk ~ + 1] -1 (3.8) 
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In addition, Ek ~ = (~k 2 + A02) 1/2 and ~k = (h2k2/2m) - # (I ~ is the chemical 
potential).  Because Jk(c%) depends on the frequency co,, Eq. (3.2) is no longer 
a simple linear eigenvalue equation. However,  we can still obtain a per- 
turbat ion expansion for the frequencies co,. 

As before, it is convenient  to introduce a new function iz,(k, q)>, which is 
defined by 

Iz,(k, q))  = [-1 + Yk(O~o)]lqJ,(k, q)> (3.9) 

Then, Eq. (3.2) can be written 

~o,[1 + Jk(~,)]  llz,(k, q)> - qu~lg,(k, q)> = i/~k+)lg,(k, q)> (3.10) 

The collision opera tor  [(k + ) has four zero eigenfunctions, which we shall write 

14,t) = B~k~ (3.11a) 

14 ,2 )  ~- Bzky (3.11b) 

14,3) = B3k~ (3.11c) 

14,4) = B 4 E k  0 (3.1 ld)  

where B~, 7 = 1 ..... 4, is a normalizat ion constant ,  

B~ = (4,~14,~) ~/2 (3.12) 

Thus, the eigenfunctions [4,~) are normalized to one. Note  that  since ~k +~ is 
self-adjoint, the left and right eigenvectors 14,~> and <4,~1 are equal. 

Before we can perform a per turbat ion expansion, we must  write IZ~? ~) in 
terms of  the correct  linear combinat ion  of  zero eigenfunctions kb~). That  is, we 
write IZ~ ~ in the form 

IX~? )) = ~ c,,~[4,,>, 7, 7' = 1 ..... 4 (3.13) 

and we must  determine the coefficients c~,~. We will anticipate some of  the 
results in order  to simplify the discussion. As for the case o f  the normal  fluid, 
the shear modes will decouple f rom the longitudinal modes. This can be seen 
rather  easily if we note  that  there are no terms in Eqs. (3.4) and (3.10) which 
can couple the eigenfunctions 14,1) and 14,2) to the eigenfunctions 14,3) and 
14,4 >. Similarly, [4,1 > and 14,2 > cannot  be coupled to one another.  This enables 
us to make the following identification: 

Lx~ ~ = 14,1) 

Iz~ ~ = 14,2) 

Iz~3 ~ = c3314,3> + c3,14,,> 

Izk ~ = c4314,3> + c44L4,4> 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 
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The eigenfunctions ]g~ ~ and ]g(2 ~ correspond to the shear modes. The 
eigenfunctions Ig(3 ~ and 1)~o)) correspond to the longitudinal modes. 

Let us now consider the shear modes and find expressions for ~o 1 and co 2 
to second order in q. Since 

Jk(CO~)lZ(~ ~ = 0 for ~ = 1, 2 (3.15) 

because of angle integrations, and because T~+)lz~~ ) = 0, we find 

~o(~ ~ = 0, c~ = 1, 2 (3.16) 

The expression for r 1), c~ = 1, 2, can be written 

(2)(1) = (Z(0) lUzlZ~o))  = 0 ,  C( = 1, 2 (3.17) 

Note that e)~ ~) is zero because of angle integrations in the matrix element 
()d~176 The function [Z~X)(k)), c~ = 1, 2, can be written 

I ) 4 1 ) ( k ) )  = - (iI(k +))- XUzlZ(~~ (3. l 8) 

If we retain terms of second order in q in Eq. (3.10), we finally obtain 

co~ 2) = - (Z~~176  c~ = 1, 2 (3.19) 

and by symmetry e)] 2) = co(2 z). Thus, to second order in q, the shear mode 
frequencies can be written 

co~ = --q2(z~~176 ~ = 1, 2 (3.20) 

If we now compare Eq. (3.20) with Eq. (1.6.21) for the macroscopic dispersion 
relation for the same shear modes, we obtain the following microscopic 
expression for the coefficient of  shear viscosity: 

t / =  - (k~lk~) - tp ,~162 ~lkxu~) (3.21) 

As we expect, the coefficient of  shear viscosity is expressed in terms of  a 
bogolon momentum current correlation function. 

4. L O N G I T U D I N A L  M O D E S - - G E N E R A L  D I S C U S S I O N  

We now wish to obtain dispersion relations for the longitudinal modes. 
We must find four of them, two first-sound modes and two second-sound 
modes. IfEq.  (3.6) were a simple linear eigenvalue equation, this would not be 
possible. However, the dependence of Eq. (3.6) on Jk(e),) changes its whole 
character. For  the shear modes Jk(o),) does not contribute, but for the 
longitudinal modes it plays a very important role. 

In I we were able to close the kinetic equation for the total bogolon 
density by requiring that the total particle density satisfy a continuity equation 
(the usual assumption of  two-fluid hydrodynamics). This enabled us to 
express the chemical potential in terms of bogolon distribution functions, 
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thereby closing the kinetic equations. However, it also introduced an 
unphysical imaginary term into the chemical potential. It is easy to see that 
unless this imaginary term can be neglected, there are no microscopic 
longitudinal hydrodynamic modes. The imaginary term in the chemical 
potential is the term in Eq. (3.4) that depends on the collision integral. Let us 
consider the effect of this term on the operator [1 + Jk(c%)]- 1. We can write 
Jk(e}~) as follows: 

q2Ak qe)~//k q/~l K2 
Jk((D~) = ~'k § JVk § F(T)o) 2 + R(T)q2  + F(T)fo 2 § R(T)q2  + ~ -  + - -  C%2 f.O a 

(4.1) 

where 

h 2 k & 2 F(T)]} (4.2) 

& = - g  [1 + r(r)1-1 (~zl - [1 + P(T)] (4.3) 
k L \  / 

K1 - h g ( E ~  m 2F(T)Ikz) i~+} (4.4) 

g [1 + F(T)] W-6 2~, ~ ilk (4.5) 
/~2 2 F ( T )  ]E7 k / XEk  

& X , / / &  ] (4.6) ~?k = g[1 + r ( r )3-  ET00/X,e~I 

5~ k gAo 2 ~k X z / A o  ] (4.7) 
- z(T) (Ek~ 

Let us attempt to find co(~ ~ by retaining terms in Eq. (3.6) which are zeroth 
order in q. We then obtain the following equation for e)(~~ 

( ( l ) - 1 ( ~  ~ ) 
o)(~ ~ q~, 1 + ~r + f k  + ~ / ( 2  )~ -- 0 (4.8) 

0-} a 

It is easy to evaiuate various matrix elements in Eq. (4.8). Let us first note that 
because of angle integrations, 

(Mk + f/k)kb3) = (q~3l(Mk + f k  + /(2) = 0 (4.9) 

Furthermore, if we neglect contributions to Eq. (4.8) that are of order Ao/EF, 

where E F is the energy of the Fermi surface, we find 



Microscopic Modes in a Fermi Superfluid. II 119 

(these terms involve integrals odd in ~k), and finally, because of conservation 
of bogolon momentum and energy, we have 

Kzlq54) =/(21q53) = 0 (4.1 1) 

If  we make use of  these results in Eq. (4.8), we find 

co~ ~ = 0 (4.12) 

However, we now see that our perturbation expansion is inconsistent because 
higher order terms depend on (1/o9~~ 1 . I f  co~ ~ = 0, then higher order terms 
are infinite. Thus the longitudinal hydrodynamic modes appear to be 
undefined. Note, however, that if we relax condition (4.10), we no longer 
obtain the result ~o~ ~ = 0. Then co~ ~ can have a finite value, and our 
perturbation expansion can be well defined. Equation (4.10) is one of the 
assumptions we made in deriving the closed kinetic equations. We cannot 
relax it here without changing the kinetic equations. For small q, the 
imaginary terms contribute through matrix elements of  the form (~klk~l~k) 
and (~klk2JCk). Since Ck is zero at the Fermi surface and Ofu~ ~ is fairly 
sharply peaked at the Fermi surface, the contributions from these matrix 
elements are small. 

The imaginary terms appear to originate in the approximations that were 
made in deriving the scalar bogolon equations from the kinetic matrix 
describing particle propagation,  and they act as a small-particle source. The 
nonconservation of particle number by the bogolon equations is a drawback 
of this model, and one which has been mentioned beforefl '3 In the next 
section, we shall neglect these small terms, since this appears to be consistent 
with the approximations we have already made in deriving the scalar bogolon 
equations. 

. L O N G I T U D I N A L  M O D E S - - D I S P E R S I O N  R E L A T I O N S  

Let us now find the dispersion relations for the longitudinal modes to 
second order in q. The kinetic equation can be written in the form 

co~[1 +/~ ] -  llz~(k , q)) - quzlz~(k, q)) = i/'~k*)lz~(k, q)) (5.1) 

where 

Pk(~o~) = ~k + ~ + Ak(~) + ~k(~o~) (5.2) 

Jk(co~) = q2~,ik/[o~2F(T ) + R(T)q 2] (5.3) 

and 

J~k(CO~) = qCOJBk/[Co~2F( T) q- R( T)q 23 (5.4) 
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(cf. Section 4 for a discussion). In the 

<4'4111 + P,,(co,)] -~14~,,> = 

<4'41[1 + Pk(co~)]-limb3) =-- 

<q5311-1 +/3k(c%)]-llq54) = 

(4~31[1 + Pk(o)~)]-lkb3) = 

and 

Appendix we show that 

1 (5.5) 

0 (5.6) 

o (5.7) 

(43[[  1 + Ak(c~ ' ]43)  (5.8) 

<#~41Z~1)> (5.9) 

<~31FI + Pk(~%)] 'lz~')> = <~3[[I + Ak(~%)l-~IZ~')> (5.10) 

From the discussion in Section 4 (neglecting/s and/(2) ,  we find immediately 
that 

co~ ~ = 0 (5.1 l) 

It is now useful to expand [ 1 + Ak(co,)] - 1 in powers of  q. If we use Eq. (5.11), 
we find 

[1 + 2k(~o~)] -~ = 1 + ( o ~ ' ) ~  + R- 1 - q F ( ~ ) ~  r + R] ~ +- .-  

(5.12) 

We can now use Eqs. (5.5)-(5.8) and (5.12) to obtain the frequencies o~ 1). 
Let us retain terms in Eq. (3.6) that are of  order  q, 

~o~[1 + d~(o)~)]o ~tz~ ~ - ~/z~ ~ = i/~+)lz~l~> (5.13) 

where 

Ak ] 
[1 + Ak(CO~)]o I = 1 + (o9~1))2 F + R (5.14) 

We see immediately that 

IZ~ 1)) = (if(k+))- 1{o~1)[1 + Ak(O)~)]o' -- Uz}lZ(~ ~ (5.15) 

Let us now multiply Eq. (5.13) by <4~,,I and use Eqs. (3.10c)-(3.10d). We find 

a = 3 , 4  ct=3,4 

If  we let c(' = 3 and use Eqs. (5.7) and (5.8), we find 

o9(~')c~,3(q5311-1 + ..Z~k((.O~)]o l [q~3>  - -  c~,4(~b31uzlq~4> = 0 (5.17) 
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while for ~" = 4 we find 

(D(1)C0~ 4 - -  c~3(q~41u=lq53) = 0 (5.18) 

The matrix element (q531[1 + Ak(c%)]o~lq53) is easy to evaluate. We obtain 

(4631[1 + 2k(o)~)]o1[q53> 

((D~I))2F + R 
= (5.19) 

(o)(~1))2F + R + ( g h 2 / m 2 ) ( k = l { ( ~ k / E k ~  - -  E1 + F (T) l} lkz )  

From Eqs. (5.17) and (5.18), we obtain the following equation for e)~l): 

F(T)[~(~t)] 4 + [c~ - F(T)(4~31u=I494)(4)41u~I4~3)] 

- (#)3luzl#a4)(#)4lu=[#)3) 

[ tl )1 x R ( T ) + g  m k= Ck --[1 + F ( T ) l  kz = 0  

t (5 .20)  

Equation (5.20) has four solutions, and therefore we obtain the desired four 
longitudinal sound modes, two first-sound modes and two second-sound 
modes. It is interesting to compare Eq. (5.20) to Eq. 0.6.30). We then obtain 
the following microscopic expressions for the various sound velocities: 

Cs 2 = ( c~3[uzl#)4)( dp4lUz[#)3) (5.21) 

u T 2 = - R(T)/F(T) (5.22) 

(c~ 2 - c2)uT ~ 

(Cs ~ - u~2): 

- - ( c P 3 [ U z l C ~ 4 ) ( d 2 4 [ U z l # ) 3 ) f f ( h / m ) 2 ( k z l { ( r 1 7 6  2 -- [1 + F(Z)]}lk~) 

[ ( 493[u~l#) 4) ( #) 41@#)3)F( Z) + R(T)] 2 
(5.23) 

It is interesting to note that although there is no continuity equation for the 
bogolons, there is still an adiabatic sound velocity, but its value is determined 
in terms of the energy and momentum eigenfunctions. In the normal fluid, (3) 
there is a similar contribution to the adiabatic sound velocity, but at low 
temperature it is far less important than the contribution that results from 
particle conservation in the normal fluid. If bogolons were conserved during 
collisions, there would be additional important contributions to all these 
velocities. In terms of the above velocities, the frequency of the first-sound 
mode may be written 

= q I ( - 
e)~ ~ c~ z + ur 2 + (Cs 2 -  ur 2) 1 -  4(er2 c2)urZ~l12]a12 (5.24) 

(~s ,C) ~ ) J 
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and 

c o r = ~ q [ c s 2 +  UT 2 - -  (Cs2 - -  UT2)(1 -- 4(CT2--Cs2)NI'2~l"211/2~? Z~2T 2 -/ j (5.25) 

We see that because of the presence of Pk(co~) in the equation for the total 
bogolon density, the dimension of the space of longitudinal hydrodynamic 
modes has increased from the expected two to four. The fact that we have 
obtained four longitudinal modes is not an accident. It is a result of the 
peculiar structure of Pk(co~). 

We now have four longitudinal hydrodynamic modes. We shall denote 
their zero eigenfunctions by Iz~~ where fl = a, b, c, d. We know that 
c@ ~ = 0. We will let fl = a and b denote the first-sound modes and 3 = c 
and d denote the second-sound modes. Thus, 

o)(1) = +cos,  (z~(b,) = _COs, co~x) = +cot, co~t) = - m r  (5.26) 

The eigenfunctions IZ~ ~ are not linearly independent. They are expressed in 
terms of I~b3) and I~b4) according to the equation 

= 3,4 

Equation (5.1) can now be written in the form 

(5.27) 

co~l, ~ ca,<~b,,lEl§ ~ ea,<r162 > (5.28) 
~'=3,4 ~'= 3,r 

and we can solve for the coefficients ca~,. We find that 

ca3 = ca4 co~l)(~b31[1 + Jk(coa)]o 114~) (5.29) 

We can completely determine the coefficients ca~ by requiring that the 
functions }Z~ ~ be normalized to one, 

(z~~ ~ =- 1 (5.30) 

We will not write all the coefficients here. 
Let us next obtain an expression for r We can do this if we retain terms 

in Eq. (5.1) of order q2. We then find 

(.O(1)El -[- ~,Z].k((.Oa)]O-J[Z(1)~> -}- (.0(2)[1 -[- ~Z~k((.Oa)3(lr 

+ co~2)E1 + Au(coa)]o alz~ ~ - u~lz~ a)) = i~k+)lz~ z ' )  (5.31) 
where 

[1 + A(coa)]Zr = - [ 1  + Ak(coa)];r E(co~l~)2r + R32 (5.32) 
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If we multiply by (7~}~ we obtain the following expression for co}21: 

• ((Z~~ -- c@1)[1 q- Ak(c%)](o~}[Z~*)>) (5.33) 

where 17~ 1)5 has been given in Eq. (5.15). Thus, the microscopic expression for 
the longitudinal modes takes the form 

(O/~ = q ~ l )  q_ q209}2) q_ ... (fi = a, b, c, d) (5.34) 

as we expect. We have thus obtained microscopic expressions for atl 
hydrodynamic modes directly from the kinetic equation, without having to 
solve the quartic equation which results from Eqs. (I.6.26) (I.6.29). However, 
in order to obtain microscopic expressions for the longitudinal transport 
coefficients from this method, we must solve the quartic equation to order q2. 
We can then match the solutions obtained to the microscopic equations for 
the hydrodynamic frequencies and thereby obtain microscopic expressions for 
the longitudinal transport coefficients. 

8. CONCLUDING REMARKS 
The microscopic expressions we have obtained for the amplitude and 

dispersion relations of the hydrodynamic modes will be good as long as there 
are no other eigenvalues of the collision operators which are close to zero. The 
condition that the perturbation expansion be valid is that 

I(z~,~162176 >> q(x, luzlz=> (6.1) 

where ])~,~ is a nonhydrodynamic eigenfunction of i~ +). From Ref. 2, we 
know that for the normal phase the bogolon excitations change to particle-like 
excitations and an additional hydrodynamic eigenfunction of i~ +) appears due 
to particle conservation. Thus, even in the superfluid phase we expect that 
there will be one eigenfunction of f~+) with an eigenvalue much smaller than 
the rest. This will correspond to a mode whose amplitude is slowly damped 
due to collisions. This mode will have no effect on the spin diffusion mode and 
probably little or no effect on the shear modes, since it will be largely 
orthogonal to them, but it can have an important effect on the longitudinal 
modes. However, since we can choose q as small as we want, we can in 
principle always satisfy Eq. (6.1) for inhomogeneities of sufficiently long 
wavelengths. 

A P P E N D I X  

In this appendix, we shall derive Eqs. (5.5)-(5.10). Let us first note the 
following facts. Because of angle integrations the following quantities are 
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identically zero" 

(/) + A)(/~ + M + P?) = 0 (A. 1) 

(~r + 2V)A = 0 (A.2) 

(M + ]V)14)3) = 0 (A.3) 

(4)31(~r + _N +/1)  = 0 (A.4) 

(A +/~)[4)4) = 0 (A.5) 

(4~412 = o (1.6) 

In deriving the bogolon kinetic equations, we neglected terms of order Ao/EF, 
where E r is the energy at the Fermi surface. We will also neglect these terms 
here. Then we find 

(4)41(~r + ~" + / ) )  ~ 0 (A.7) 

MI4)4> .z 0 (A.8) 

N(M +/~) ~ 0 (A.9) 

We can now evaluate matrix elements of [1 + Pk(co~)]- 1 
From Eqs. (A.6) and (A.9), we find immediately 

(4)41(1 + ~r + 5~ + A +/~)- '14)3) = 0 (A.10) 

(4)41(1 + M +/V + A +/~)-l l4)4) = l (A.l l )  

(4)41(1 § /~ § /V § A §  llX(1) ) = (4)41X(a 1)) (A.12) 

Let us next consider (4)3j(1 + P0-114)4). From Eqs. (A.1), (A.4), and (A.5), 
we find 

(4)31(1 § 3 § /~ § ~r § N)-114)4) 

= (4)3[[1 § (1 § A § /1)- ~(/~r + N)]-x(1 § A + /~) -  llq~4) 

= (4)31(1 + M +  N)-~14)4) = 0 (A.13) 

If we use Eqs. (A.1) and (A.4), the matrix element (4)31(1 + Pk)- 11q52) can be 
written 

(4)31(1 + A +/~  + ~ + f )  1[4)3 ) 

= (q~31[1 + (1 + A) 1(M + N + B)]-~(1 + A ) - 1 [ 4 ) 3 )  

= (4)31(1 + &r + 5~+ 8)-1(1 + A)-1Iq53) 

= (4)31(1 § 2)-11(~3) (A.14) 
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By a s impler  ca lcula t ion  we also ob ta in  

(~b31(1 + A + / ~ + M + N ) - l I Z ~ l / ) = { q 5 3 J ( 1  + A ) - ~ I Z ~  1)) (A.15) 
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